Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.147
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Anal Chem ; 96(18): 6906-6913, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38656893

RESUMO

Glycerol tributyrate as a low-density lipoprotein plays a crucial role in drug development and food safety. In this work, a novel high-stability fiber optic sensor for glyceryl tributyrate based on the poly(acrylic acid) (PAA) and chitosan (CS) composite hydrogel embedding method is first proposed. Compared with traditional functionalization, the lipase in a polymer network structure used in this article can not only avoid chemical reactions that cause damage to the enzyme structure but also avoid the instability of ionic bonds and physical adsorption. Therefore, the PAA/CS hydrogel method proposed in this article can effectively retain enzyme structure. First, the impact of different layers (one to five layers) of PAA/CS on pH sensing performance was explored, and it was determined that layers 1-3 could be used for subsequent sensing experiments. Within the linear detection range of 0.5-10 mM, the detection sensitivities of the one to three layers of the biosensor are divided into 0.65, 0.95, and 1.51 nm/mM, respectively, with the three layers having the best effect. When the number of coating layers is three, the detection limit of the sensor is 0.47 mM, meeting the millimole level detection standard for anticancer requirement. Furthermore, the stability and selectivity of the sensor (in the presence of hemoglobin, urea, cholesterol, acetylcholine, and glucose) were analyzed. The three-layer sensor is used for sample detection. At concentrations of 1-10 mM, the absolute value of the recovery percentage (%) is 82-99%, which can accurately detect samples. The sensor proposed in this paper has the advantages of low sample consumption, high sensitivity, simple structure, and label-free measurement. The enzyme-embedding method provides a new route for rapid and reliable glyceryl tributyrate detection, which has potential applications in food safety as well as the development of anticancer drugs.


Assuntos
Resinas Acrílicas , Quitosana , Fibras Ópticas , Ressonância de Plasmônio de Superfície , Resinas Acrílicas/química , Quitosana/química , Hidrogéis/química , Limite de Detecção , Lipase/química , Lipase/metabolismo , Técnicas Biossensoriais/métodos
2.
Biomed Phys Eng Express ; 10(3)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38626737

RESUMO

A novel fiber optic biosensor was purposed for a new approach to monitor amyloid beta protein fragment 1-42 (Aß42) for Alzheimer's Disease (AD) early detection. The sensor was fabricated by etching a part of fiber from single mode fiber loop in pure hydrofluoric acid solution and utilized as a Local Optical Refractometer (LOR) to monitor the change Aß42 concentration in Artificial Cerebrospinal Fluid (ACSF). The Fiber Loop Ringdown Spectroscopy (FLRDS) technique is an ultra-sensitive measurement technique with low-cost, high sensitivity, real-time measurement, continuous measurement and portability features that was utilized with a fiber optic sensor for the first time for the detection of a biological signature in an ACSF environment. Here, the measurement is based on the total optical loss detection when specially fabricated sensor heads were immersed into ACSF solutions with and without different concentrations of Aß42 biomarkers since the bulk refractive index change was performed. Baseline stability and the reference ring down times of the sensor head were measured in the air as 0.87% and 441.6µs ± 3.9µs, respectively. Afterward, the total optical loss of the system was measured when the sensor head was immersed in deionized water, ACSF solution, and ACSF solutions with Aß42 in different concentrations. The lowest Aß42 concentration of 2 ppm was detected by LOR. Results showed that LOR fabricated by single-mode fibers for FLRDS system design are promising candidates to be utilized as fiber optic biosensors after sensor head modification and have a high potential for early detection applications of not only AD but possibly also several fatal diseases such as diabetes and cancer.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Técnicas Biossensoriais , Diagnóstico Precoce , Tecnologia de Fibra Óptica , Fragmentos de Peptídeos , Análise Espectral , Doença de Alzheimer/diagnóstico , Peptídeos beta-Amiloides/análise , Humanos , Tecnologia de Fibra Óptica/métodos , Fragmentos de Peptídeos/análise , Técnicas Biossensoriais/métodos , Análise Espectral/métodos , Fibras Ópticas , Biomarcadores/análise , Refratometria , Desenho de Equipamento
3.
Opt Express ; 32(6): 10077-10092, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38571228

RESUMO

Every year, millions of people suffer some form of illness associated with the consumption of contaminated food. Escherichia coli (E. coli), found in the intestines of humans and other animals, is commonly associated with various diseases, due to the existence of pathogenic strains. Strict monitoring of food products for human consumption is essential to ensure public health, but traditional cell culture-based methods are associated with long waiting times and high costs. New approaches must be developed to achieve cheap, fast, and on-site monitoring. Thus, in this work, we developed optical fiber sensors based on surface plasmon resonance. Gold and cysteamine-coated fibers were functionalized with anti-E. coli antibody and tested using E. coli suspensions with concentrations ranging from 1 cell/mL to 105 cells/mL. An average logarithmic sensitivity of 0.21 ± 0.01 nm/log(cells/mL) was obtained for three independent assays. An additional assay revealed that including molybdenum disulfide resulted in an increase of approximately 50% in sensitivity. Specificity and selectivity were also evaluated, and the sensors were used to analyze contaminated water samples, which verified their promising applicability in the aquaculture field.


Assuntos
Técnicas Biossensoriais , Ressonância de Plasmônio de Superfície , Animais , Humanos , Ressonância de Plasmônio de Superfície/métodos , Escherichia coli , Fibras Ópticas , Técnicas Biossensoriais/métodos , Imunoensaio
4.
Sci Rep ; 14(1): 9446, 2024 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658694

RESUMO

To validate the feasibility of a fiber-optic pressure sensor-based pressure measurement device for monitoring intrarenal pressure and to analyze the effects of ureteral acess sheath (UAS) type, surgical location, perfusion flow rate, and measurement location on intrarenal pressure (IRP). The measurement deviations and response times to transient pressure changes were compared between a fiber-optic pressure sensing device and a urodynamic device IRP in an in vitro porcine kidney and in a water tank. Finally, pressure measurements were performed in anesthetized female pigs using fiber-optic pressure sensing device with different UAS, different perfusion flow rates, and different surgical positions at different renal calyces and ureteropelvic junctions (UPJ). According to our operation, the result is fiber optic pressure sensing devices are highly accurate and sensitive. Under the same conditions, IRP varied among different renal calyces and UPJ (P < 0.05). IRP was lowest at 50 ml/min and highest at 150 ml/min (P < 0.05). Surgical position had a significant effect on IRP (P < 0.05). 12/14 Fr UAS had a lower IRP than 11/13 Fr UAS. Therefore fiber optic pressure sensing devices are more advantageous for IRP measurements. In ureteroscopy, the type of ureteral sheath, the surgical position, the perfusion flow rate, and the location of the measurement all affect the intrarenal pressure value.


Assuntos
Tecnologia de Fibra Óptica , Rim , Pressão , Ureteroscopia , Animais , Tecnologia de Fibra Óptica/instrumentação , Suínos , Feminino , Rim/fisiologia , Ureteroscopia/instrumentação , Ureteroscopia/métodos , Fibras Ópticas , Urodinâmica
5.
J Biomed Opt ; 29(4): 046001, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38585417

RESUMO

Significance: Endoscopic screening for esophageal cancer (EC) may enable early cancer diagnosis and treatment. While optical microendoscopic technology has shown promise in improving specificity, the limited field of view (<1 mm) significantly reduces the ability to survey large areas efficiently in EC screening. Aim: To improve the efficiency of endoscopic screening, we propose a novel concept of end-expandable endoscopic optical fiber probe for larger field of visualization and for the first time evaluate a deep-learning-based image super-resolution (DL-SR) method to overcome the issue of limited sampling capability. Approach: To demonstrate feasibility of the end-expandable optical fiber probe, DL-SR was applied on simulated low-resolution microendoscopic images to generate super-resolved (SR) ones. Varying the degradation model of image data acquisition, we identified the optimal parameters for optical fiber probe prototyping. The proposed screening method was validated with a human pathology reading study. Results: For various degradation parameters considered, the DL-SR method demonstrated different levels of improvement of traditional measures of image quality. The endoscopists' interpretations of the SR images were comparable to those performed on the high-resolution ones. Conclusions: This work suggests avenues for development of DL-SR-enabled sparse image reconstruction to improve high-yield EC screening and similar clinical applications.


Assuntos
Esôfago de Barrett , Aprendizado Profundo , Neoplasias Esofágicas , Humanos , Fibras Ópticas , Neoplasias Esofágicas/diagnóstico por imagem , Esôfago de Barrett/patologia , Processamento de Imagem Assistida por Computador
6.
Anal Chem ; 96(14): 5446-5454, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38556805

RESUMO

In this study, a novel integrated photoelectrochemical (PEC) sensor platform was proposed, utilizing an optical fiber (OF) as the working electrode for guided in situ light. A CdS quantum dots (QDs)/ZnO nanosheets (NSs) n-n heterojunction was quickly and easily constructed on the OF surface by successive ionic layer adsorption and reaction (SILAR). Au nanoparticles (NPs)@dsDNA as a capturing probe were modified on the CdS QDs/ZnO NSs@OF (CZ@OF). Due to the energy transfer between Au NPs@dsDNA and CdS QDs, the resultant opto-electrode has a lower background near zero, enabling the "signal-on" detection of biomarkers (interleukin-6 (IL-6) as a model). The OF-PEC biosensor demonstrated a wide linear range from 1 to 100 pg mL-1 with a regression coefficient (R2) of 0.9958 and an impressive detection limit (LOD) of 0.19 pg mL-1. More significantly, the proposed OF-PEC can be successfully used for the detection of IL-6 in serum samples from patients with pulmonary arterial hypertension, and it showed consistency and is more sensitive to trace concentrations compared to BD FACSCanto II flow cytometry used at the hospital. This holds significance for an early disease diagnosis. Therefore, the proposed OF-PEC not only achieves integration of the light source and sensing interface but also enables sensitive and accurate "signal-on" detection of IL-6. Furthermore, due to the flexibility and remote detection capabilities of OF, the application of OF-PEC is expected to be expanded more widely. This approach opens up possibilities for advances in PEC sensing.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Pontos Quânticos , Óxido de Zinco , Humanos , Técnicas Eletroquímicas , Citocinas , Interleucina-6 , Ouro , Adsorção , Fibras Ópticas , Eletrodos , Limite de Detecção
7.
Sensors (Basel) ; 24(6)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38544254

RESUMO

The accuracy and efficacy of medical treatment would be greatly improved by the continuous and real-time monitoring of protein biomarkers. Identification of cancer biomarkers in patients with solid malignant tumors is receiving increasing attention. Existing techniques for detecting cancer proteins, such as the enzyme-linked immunosorbent assay, require a lot of work, are not multiplexed, and only allow for single-time point observations. In order to get one step closer to clinical usage, a dynamic platform for biosensing the cancer biomarker CD44 using a single-mode optical fiber-based ball resonator biosensor was designed, constructed and evaluated in this work. The main novelty of the work is an in-depth study of the capability of an in-house fabricated optical fiber biosensor for in situ detection of a cancer biomarker (CD44 protein) by conducting several types of experiments. The main results of the work are as follows: (1) Calibration of the fabricated fiber-optic ball resonator sensors in both static and dynamic conditions showed similar sensitivity to the refractive index change demonstrating its usefulness as a biosensing platform for dynamic measurements; (2) The fabricated sensors were shown to be insensitive to pressure changes further confirming their utility as an in situ sensor; (3) The sensor's packaging and placement were optimized to create a better environment for the fabricated ball resonator's performance in blood-mimicking environment; (4) Incubating increasing protein concentrations with antibody-functionalized sensor resulted in nearly instantaneous signal change indicating a femtomolar detection limit in a dynamic range from 7.1 aM to 16.7 nM; (5) The consistency of the obtained signal change was confirmed by repeatability studies; (6) Specificity experiments conducted under dynamic conditions demonstrated that the biosensors are highly selective to the targeted protein; (7) Surface morphology studies by AFM measurements further confirm the biosensor's exceptional sensitivity by revealing a considerable shift in height but no change in surface roughness after detection. The biosensor's ability to analyze clinically relevant proteins in real time with high sensitivity offers an advancement in the detection and monitoring of malignant tumors, hence improving patient diagnosis and health status surveillance.


Assuntos
Técnicas Biossensoriais , Neoplasias , Humanos , Biomarcadores Tumorais , Técnicas Biossensoriais/métodos , Tecnologia de Fibra Óptica/métodos , Fibras Ópticas , Proteínas , Neoplasias/diagnóstico , Receptores de Hialuronatos
8.
Biosens Bioelectron ; 255: 116237, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38537429

RESUMO

Scintillation-based fiber dosimeters are a powerful tool for minimally invasive localized real-time monitoring of the dose rate during Low Dose Rate (LDR) and High Dose Rate (HDR) brachytherapy (BT). This paper presents the design, fabrication, and characterization of such dosimeters, consisting of scintillating sensor tips attached to polymer optical fiber (POF). The sensor tips consist of inorganic scintillators, i.e. Gd2O2S:Tb for LDR-BT, and Y2O3:Eu+4YVO4:Eu for HDR-BT, dispersed in a polymer host. The shape and size of the tips are optimized using non-sequential ray tracing simulations towards maximizing the collection and coupling of the scintillation signal into the POF. They are then manufactured by means of a custom moulding process implemented on a commercial hot embossing machine, paving the way towards series production. Dosimetry experiments in water phantoms show that both the HDR-BT and LDR-BT sensors feature good consistency in the magnitude of the average photon count rate and that the photon count rate signal is not significantly affected by variations in sensor tip composition and geometry. Whilst individual calibration remains necessary, the proposed dosimeters show great potential for in-vivo dosimetry for brachytherapy.


Assuntos
Técnicas Biossensoriais , Braquiterapia , Dosímetros de Radiação , Fibras Ópticas , Polímeros
9.
Anal Methods ; 16(11): 1659-1673, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38419435

RESUMO

In the fight against oral cancer, innovative methods like Raman spectroscopy and deep learning have become powerful tools, particularly in integral tasks encompassing tumor staging, lymph node staging, and histological grading. These aspects are essential for the development of effective treatment strategies and prognostic assessment. However, it is important to note that most research so far has focused on solutions to one of these problems and has not taken full advantage of the potential wealth of information in the data. To compensate for this shortfall, we conceived a method that combines Raman spectroscopy with deep learning for simultaneous processing of multiple classification tasks, including tumor staging, lymph node staging, and histological grading. To achieve this innovative approach, we collected 1750 Raman spectra from 70 tissue samples, including normal and cancerous tissue samples from 35 patients with oral cancer. In addition, we used a deep neural network architecture to design four distinct multi-task network (MTN) models for intelligent oral cancer diagnosis, named MTN-Alexnet, MTN-Googlenet, MTN-Resnet50, and MTN-Transformer. To determine their effectiveness, we compared these multitask models to each other and to single-task models and traditional machine learning methods. The preliminary experimental results show that our multi-task network model has good performance, among which MTN-Transformer performs best. Specifically, MTN-Transformer has an accuracy of 81.5%, a precision of 82.1%, a sensitivity of 80.2%, and an F1_score of 81.1% in terms of tumor staging. In the field of lymph node staging, the accuracy, precision, sensitivity, and F1_score of MTN-Transformer are 81.3%, 83.0%, 80.1%, and 81.5% respectively. Similarly, for the histological grading classification tasks, the accuracy was 83.0%, the precision 84.3%, the sensitivity 76.7%, and the F1_score 80.2%. This code is available at https://github.com/ISCLab-Bistu/MultiTask-OralRamanSystem.


Assuntos
Aprendizado Profundo , Neoplasias Bucais , Humanos , Fibras Ópticas , Análise Espectral Raman , Neoplasias Bucais/diagnóstico , Diagnóstico Bucal
10.
Bioinspir Biomim ; 19(3)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38306671

RESUMO

With increasing attention on the world's oceans, a significant amount of research has been focused on the sensing of marine-related parameters in recent years. In this paper, a bioinspired flow sensor with corrosion resistance, anti-interference capability, a portable design structure, easy integration, and directional sensing ability is presented to realize flow speed sensing in open water. The sensor is realized by a flexible artificial cupula that seals one side of an optical fiber acting as an artificial kinocilium. Below the artificial kinocilium, an encapsulated s-tapered optical fiber mimics the fish neuromast sensory mechanism and is supported by a 3D-printed structure that acts as the artificial supporting cell. To characterize the sensor, the optical transmission spectra of the sensory fiber under a set of water flow velocities and four orthogonal directions were monitored. The sensor's peak intensity responses were found to demonstrate flow sensing ability for velocity and direction, proving that this biomimetic portable sensing structure is a promising candidate for flow sensing in marine environments.


Assuntos
Biomimética , Fibras Ópticas , Animais , Água , Mecanorreceptores , Peixes
11.
Lasers Med Sci ; 39(1): 61, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38358591

RESUMO

Thermoablative techniques currently represent, in accordance with international guidelines, the most used methods in the treatment of varicose veins. From some years, lasers with a wavelength greater than 1900 nm have been introduced for EndoVenous Laser Ablation (EVLA) treatment. However, currently, few clinical studies regarding this new technology are reported in the medical literature. The aim of this study is to evaluate outcomes at a 2-year follow-up (mid-term) of EVLA of varicose veins of the lower limbs using a 1940-nm laser and a new cylindric monoring fiber. This clinical trial was conducted as a multicenter, retrospective, non-randomized, non-blind clinical study. Ninety-three patients were enrolled for a total of one hundred consecutive procedures performed in the period between January 2021 and May 2021 in two Italian facilities. The primary efficacy endpoint was the occlusion rate of the treated vein immediately after surgery and at the follow-up (24 months). The secondary efficacy endpoint was the evaluation of the parameters of energy delivered during the procedure (power and linear energy density or LEED). The primary safety endpoints were the incidence of pain (1 day and 7 days after surgery) and the rate of intraoperative and postoperative complications. The precepted pain was evaluated with the visual analog scale (VAS). The secondary safety endpoint was the evaluation of the improvement of the patient's symptoms related to venous disease. This evaluation was conducted by recording the changes in clinical, etiologic, anatomic, and pathophysiologic (CEAP) classification. All procedures were carried out regularly on an outpatient basis, and no intraoperative complications occurred. The occlusion rate of the target veins was 100% at 7- and 30-day controls. At follow-up controls, performed at 6 months, 1 and 2 years carried out showed an occlusion rate respectively of 99% (97 to 100), 96.9% (93.6 to 100), and 95.9% (92.1 to 99.9). The secondary efficacy endpoint was the evaluation of the parameters of energy delivered during the procedure (power watt and linear energy density): As regards the power parameters, we report an average of watts of 4.5 ± 0.8 [2.5 to 6] and linear energy density delivered (LEED) of 41.2 ± 8.6 [(21.1 to 66.7)]. The pain reported (with VAS scale) on 1 day of the procedure was 2 [1; 3] and 1 [0 to 4] at 7 days. All patients showed improved symptoms related to venous disease, with reduction of the individual CEAP class to which they belong. This study demonstrates that EndoVascular Laser Ablation (EVLA) treatment of varicose veins with a wavelength > 1900 nm is safe and effective. The overall occlusion rate was high. The reported results suggest that using lower parameters, such as output power (watts) and LEED (linear energy density), do not reduce the success rate of the treatment when used over 35 J/cm.


Assuntos
Terapia a Laser , Varizes , Humanos , Fibras Ópticas , Estudos Retrospectivos , Varizes/cirurgia , Dor
12.
Med Phys ; 51(5): 3758-3765, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38295013

RESUMO

BACKGROUND: The interest of using fiber Bragg gratings (FBGs) dosimeters in radiotherapy (RT) lies in their (i) microliter detection volume, (ii) customizable spatial resolution, (iii) multi-point dose measurement, (iv) real-time data acquisition and (v) insensitivity to Cherenkov light. These characteristics could prove very useful for characterizing dose distributions of small and nonstandard fields with high spatial resolution. PURPOSE: We developed a multi-point FBGs dosimeter customized for small field RT dosimetry with a spatial resolution of ∼ $\sim$ 1 mm. METHODS: The 3 cm-long multi-point dosimeter is made by embedding a 80 µ m $\umu{\rm {m}}$ silica fiber containing an array of thirty (30) co-located ∼ $\sim$ 1 mm-long fs-written FBGs inside a plastic cylinder with an UV curing optical adhesive. With its higher thermal expansion coefficient, the plastic cylinder increases the sensitivity of the dosimeter by stretching the fiber containing the FBGs when the temperature rises slightly due to radiation energy deposition. Irradiations (2000 MU at 600 MU/min) were performed with a Varian TrueBeam linear accelerator. RESULTS: The dose profile of a 2  × $ \times$ 2 cm 2 $^{2}$ 6 MV beam was measured with a mean relative difference of 1.8% (excluding the penumbra region). The measured output factors for a 6 MV beam are in general agreement with the expected values within the experimental uncertainty (except for the 2  × $\,\times $ 2 cm 2 $^{2}$ field). The detector response to different energy of photon and electron beams is within 5% of the mean response ( 0.068 ± 0.002 $0.068\pm 0.002$  pm/Gy). The calorimeter's post-irradiation thermal decay is in agreement with the theory. CONCLUSIONS: An energy-independent small field calorimeter that allows dose profile and output factor measurements for RT using FBGs was developed, which, to our knowledge, has never been done before. This type of detector could prove really useful for small field dosimetry, but also potentially for MRI-LINAC since FBGs are insensitive to magnetic fields and for FLASH since FBGs have been used to measure doses up to 100 kGy.


Assuntos
Radiometria , Radiometria/instrumentação , Calorimetria/instrumentação , Fibras Ópticas , Radioterapia/instrumentação , Desenho de Equipamento , Dosagem Radioterapêutica
13.
Biosens Bioelectron ; 247: 115956, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38145595

RESUMO

Cancer radiopharmaceutical therapies (RPTs) have demonstrated great promise in the treatment of neuroendocrine and prostate cancer, giving hope to late-stage metastatic cancer patients with currently very few treatment options. These therapies have sparked a large amount of interest in pre-clinical research due to their ability to target metastatic disease, with many research efforts focused towards developing and evaluating targeted RPTs for different cancer types in in vivo models. Here we describe a method for monitoring real-time in vivo binding kinetics for the pre-clinical evaluation of cancer RPTs. Recognizing the significant heterogeneity in biodistribution of RPTs among even genetically identical animal models, this approach offers long-term monitoring of the same in vivo organism without euthanasia in contrast to ex vivo tissue dosimetry, while providing high temporal resolution with a low-cost, easily assembled platform, that is not present in small-animal SPECT/CTs. The method utilizes the developed optical fiber-based γ-photon biosensor, characterized to have a wide linear dynamic range with Lutetium-177 (177Lu) activity (0.5-500 µCi/mL), a common radioisotope used in cancer RPT. The probe's ability to track in vivo uptake relative to SPECT/CT and ex vivo dosimetry techniques was verified by administering 177Lu-PSMA-617 to mouse models bearing human prostate cancer tumors (PC3-PIP, PC3-flu). With this method for monitoring RPT uptake, it is possible to evaluate changes in tissue uptake at temporal resolutions <1 min to determine RPT biodistribution in pre-clinical models and better understand dose relationships with tumor ablation, toxicity, and recurrence when attempting to move therapies towards clinical trial validation.


Assuntos
Técnicas Biossensoriais , Neoplasias da Próstata , Masculino , Animais , Camundongos , Humanos , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/metabolismo , Compostos Radiofarmacêuticos/uso terapêutico , Glutamato Carboxipeptidase II , Distribuição Tecidual , Fibras Ópticas , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/patologia , Antígeno Prostático Específico , Lutécio/química
14.
Biosensors (Basel) ; 13(11)2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37998124

RESUMO

Dysregulated production of hydrogen sulphide in the human body has been associated with various diseases including cancer, underlining the importance of accurate detection of this molecule. Here, we report the detection of hydrogen sulphide using fluorescence-emission enhancement of two 1,8-naphthalimide fluorescent probes with an azide moiety in position 4. One probe, serving as a control, featured a methoxyethyl moiety through the imide to evaluate its effectiveness for hydrogen sulphide detection, while the other probe was modified with (3-aminopropyl)triethoxysilane (APTES) to enable direct covalent attachment to an optical fibre tip. We coated the optical fibre tip relatively homogeneously with the APTES-azide fluorophore, as confirmed via x-ray photoelectron spectroscopy (XPS). The absorption and fluorescence responses of the control fluorophore free in PBS were analysed using UV-Vis and fluorescence spectrophotometry, while the fluorescence emission of the APTES-azide fluorophore-coated optical fibres was examined using a simple, low-cost optical fibre-based setup. Both fluorescent probes exhibited a significant increase (more than double the initial value) in fluorescence emission upon the addition of HS- when excited with 405 nm. However, the fluorescence enhancement of the coated optical fibres demonstrated a much faster response time of 2 min (time for the fluorescence intensity to reach 90% of its maximum value) compared to the control fluorophore in solution (30 min). Additionally, the temporal evolution of fluorescence intensity of the fluorophore coated on the optical fibre was studied at two pH values (7.4 and 6.4), demonstrating a reasonable overlap and confirming the compound pH insensitivity within this range. The promising results from this study indicate the potential for developing an optical fibre-based sensing system for HS- detection using the synthesised fluorophore, which could have significant applications in health monitoring and disease detection.


Assuntos
Sulfeto de Hidrogênio , Humanos , Fibras Ópticas , Corantes Fluorescentes/química , Azidas , Espectrometria de Fluorescência
15.
Lasers Surg Med ; 55(10): 886-899, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38009367

RESUMO

INTRODUCTION: Infrared (IR) lasers are being tested as an alternative to radiofrequency (RF) and ultrasonic (US) surgical devices for hemostatic sealing of vascular tissues. In previous studies, a side-firing optical fiber with elliptical IR beam output was reciprocated, producing a linear IR laser beam pattern for uniform sealing of blood vessels. Technical challenges include limited field-of-view of vessel position within the metallic device jaws, and matching fiber scan length to variable vessel sizes. A transparent jaw may improve visibility and enable custom treatment. METHODS: Quartz and sapphire square optical chambers (2.7 × 2.7 × 25 [mm3 ] outer dimensions) were tested, capable of fitting into a 5-mm-OD laparoscopic device. A 1470 nm laser was used for optical transmission studies. Razor blade scans and an IR beam profiler acquired fiber (550-µm-core/0.22NA) output beam profiles. Thermocouples recorded peak temperatures and cooling times on internal and external chamber surfaces. Optical fibers with angle polished distal tips delivered 94% of light at a 90° angle. Porcine renal arteries with diameters of 3.4 ± 0.7 mm (n = 13) for quartz and 3.2 ± 0.7 mm (n = 14) for sapphire chambers (p > 0.05), were sealed using 30 W for 5 s. RESULTS: Reflection losses at material/air interfaces were 3.3% and 7.4% for quartz and sapphire. Peak temperatures on the external chamber surface averaged 74 ± 8°C and 73 ± 10°C (p > 0.05). Times to cool down to 37°C measured 13 ± 4 s and 27 ± 7 s (p < 0.05). Vessel burst pressures (BP) averaged 883 ± 393 mmHg and 412 ± 330 mmHg (p < 0.05). For quartz, 13/13 (100%) vessels were sealed (BP > 360 mmHg), versus 9/14 (64%) for sapphire. Computer simulations for the quartz chamber yielded peak temperatures (78°C) and cooling times (16 s) similar to experiments. CONCLUSIONS: Quartz is an inexpensive material for use in a laparoscopic device jaw, providing more consistent vessel seals and faster cooling times than sapphire and current RF and US devices.


Assuntos
Laparoscopia , Fibras Ópticas , Suínos , Animais , Quartzo , Óxido de Alumínio , Lasers
16.
Biosensors (Basel) ; 13(10)2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37887140

RESUMO

The sensitive and accurate detection of tumor cells is essential for successful cancer therapy and improving cancer survival rates. However, current tumor cell detection technologies have some limitations for clinical applications due to their complexity, low specificity, and high cost. Herein, we describe the design of a terahertz anti-resonance hollow core fiber (THz AR-HCF) biosensor that can be used for tumor cell detection. Through simulation and experimental comparisons, the low-loss property of the THz AR-HCF was verified, and the most suitable fiber out of multiple THz AR-HCFs was selected for biosensing applications. By measuring different cell numbers and different types of tumor cells, a good linear relationship between THz transmittance and the numbers of cells between 10 and 106 was found. Meanwhile, different types of tumor cells can be distinguished by comparing THz transmission spectra, indicating that the biosensor has high sensitivity and specificity for tumor cell detection. The biosensor only required a small amount of sample (as low as 100 µL), and it enables label-free and nondestructive quantitative detection. Our flow cytometry results showed that the cell viability was as high as 98.5 ± 0.26% after the whole assay process, and there was no statistically significant difference compared with the negative control. This study demonstrates that the proposed THz AR-HCF biosensor has great potential for the highly sensitive, label-free, and nondestructive detection of circulating tumor cells in clinical samples.


Assuntos
Técnicas Biossensoriais , Neoplasias , Humanos , Fibras Ópticas , Simulação por Computador , Tecnologia
17.
Exp Dermatol ; 32(12): 2112-2120, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37859506

RESUMO

Skin expands and regenerates in response to mechanical stretch. This important homeostasis process is critical for skin biology and can be exploited to generate extra skin for reconstructive surgery. Atmospheric oxygen uptake is important in skin homeostasis. However, whether and how cutaneous atmospheric oxygen uptake changes during mechanical stretch remains unclear, and relevant research tools to quantify oxygen flux are limited. Herein, we used the scanning micro-optrode technique (SMOT), a non-invasive self-referencing optical fiber microsensor, to achieve real-time measurement of cutaneous oxygen uptake from the atmosphere. An in vivo mechanical stretch-induced skin expansion model was established, and an in vitro Flexcell Tension system was used to stretch epidermal cells. We found that oxygen influx of skin increased dramatically after stretching for 1 to 3 days and decreased to the non-stretched level after 7 days. The enhanced oxygen influx of stretched skin was associated with increased epidermal basal cell proliferation and impaired epidermal barrier. In conclusion, mechanical stretch increases cutaneous oxygen uptake with spatial-temporal characteristics, correlating with cell proliferation and barrier changes, suggesting a fundamental mechanistic role of oxygen uptake in the skin in response to mechanical stretch. Optical fiber microsensor-based oxygen uptake detection provides a non-invasive approach to understand skin homeostasis.


Assuntos
Fibras Ópticas , Pele , Epiderme , Proliferação de Células , Oxigênio , Estresse Mecânico
18.
Sensors (Basel) ; 23(18)2023 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-37765835

RESUMO

BACKGROUND: Justification of imaging procedures such as cone beam computed tomography (CBCT) in radiotherapy makes no doubt. However, the CBCT composite dose is rarely reported or optimized, even though the repeated CBCT cumulative dose can be up to 3% of the prescription dose. This study aimed to evaluate the performance and utility of a new plastic scintillating optical fiber dosimeter for CBCT dosimetric quality assurance (QA) applications before a potential application in patient composite CBCT dosimetry. METHODS: The dosimeter, made of 1 mm diameter plastic fiber, was installed under a linear accelerator treatment table and linked to photodetectors. The fiber impact on the fluence and dose delivered was respectively assessed with an electronic portal imaging device (EPID) and EBT3 Gafchromic® film. The presence of artifacts was visually evaluated on kV images. The dosimeter performances were determined for various acquisition parameters by comparison with ionization chamber values. RESULTS: The maximum impact of the fiber on the fluence measured by the EPID was -1.2% for the 6 MV flattening filter-free beam. However, the fiber did not alter the film dose profile when measured for all the beams tested. The fiber was not visible at energies ≥ 80 kV and was merely visible on the CBCT images. When the rate of images per second or mA was changed, the maximum relative difference between the device and the ionization chamber CTDIs was <5%. Changing collimation led to a -7.2% maximum relative difference with an absolute dose difference that was insignificant (-0.3 mGy). Changing kV was associated with a -8.7% maximum relative difference, as published in the literature. CONCLUSIONS: The dosimeter may be a promising device for CBCT recurrent dosimetry quality control or dose optimization. According to these results, further developments are in progress in order to adapt the solution to the measurement of patient composite CBCT doses.


Assuntos
Artefatos , Fibras Ópticas , Humanos , Tomografia Computadorizada de Feixe Cônico , Emoções , Decoração de Interiores e Mobiliário
19.
J Biophotonics ; 16(12): e202300237, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37669917

RESUMO

Tapered profiles are introduced in Bessel and Blackman apodized fiber Bragg grating, and their sensing performance is theoretically estimated. Reflectivity equation of proposed apodized tapered profiles is obtained using transfer matrix method and coupled mode theory. Since the effective refractive index (RI) of proposed waveguides varies with core radius therefore amplitude distribution and penetration depth of light in surroundings are modified. It is found that the exponential tapered profile with Bessel apodization shows a higher sensitivity of 682.5 nm/RIU, detection accuracy of 3858.45, and quality parameter 1718.02/RIU with minimum full width at half maxima (FWHM) 0.3972 nm of the reflection spectra. The spectral response of the tapered fiber Bragg grating is also analyzed through a group delay study. Again, exponential profile was found to be particularly effective, producing less group delay ripples 2.98 ps and is maximum slope of 42.43°. Hence, exponential tapered profile is demonstrated for detection of cancer cells lies between the refractive index of 1.3333-1.4412.


Assuntos
Fibras Ópticas , Refratometria
20.
Opt Lett ; 48(15): 3849-3852, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37527065

RESUMO

Interstitial photodynamic therapy (I-PDT), which utilizes optical fibers to deliver light for photosensitizer excitation and the elimination of penetration depth limitation, is a promising modality in the treatment of deeply seated tumors or thick tumors. Currently, the excitation domain of the optical fiber is extremely limited, restricting PDT performance. Here, we designed and fabricated a biocompatible polymer optical fiber (POF) with a strongly scattering spherical end (SSSE) for I-PDT applications, achieving an increased excitation domain and consequently excellent in vitro and in vivo therapeutical outcomes. The POF, which was drawn using a simple thermal drawing method, was made of polylactic acid, ensuring its superior biocompatibility. The excitation domains of POFs with different ends, including flat, spherical, conical, and strongly scattering spherical ends, were analyzed and compared. The SSSE was achieved by introducing nanopores into a spherical end, and was further optimized to achieve a large excitation domain with an even intensity distribution. The optimized POF enabled outstanding therapeutic performance of I-PDT in in vitro cancer cell ablation and in vivo anticancer therapy. All of its notable optical features, including low transmission/bending loss, superior biocompatibility, and a large excitation domain with an even intensity distribution, endow the POF with great potential for clinical I-PDT applications.


Assuntos
Neoplasias , Fotoquimioterapia , Humanos , Fibras Ópticas , Polímeros , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA